Aims

To support the free and open dissemination of research findings and information on alcoholism and alcohol-related problems. To encourage open access to peer-reviewed articles free for all to view.

For full versions of posted research articles readers are encouraged to email requests for "electronic reprints" (text file, PDF files, FAX copies) to the corresponding or lead author, who is highlighted in the posting.

___________________________________________

Thursday, March 31, 2011

mGluR7 Genetics and Alcohol: Intersection Yields Clues for Addiction



Development of addiction to alcohol or other substances can be attributed in part to exposure-dependent modifications at synaptic efficacy leading to an organism which functions at an altered homeostatic setpoint. 
 
Genetic factors may also influence setpoints and the stability of the homeostatic system of an organism. Quantitative genetic analysis of voluntary alcohol drinking, and mapping of the involved genes in the quasi-congenic Recombinant QTL Introgression strain system, identified Eac2 as a Quantitative Trait Locus (QTL) on mouse chromosome 6 which explained 18% of the variance with an effect size of 2.09 g/kg/day alcohol consumption, and Grm7 as a quantitative trait gene underlying Eac2 [Vadasz et al. in Neurochem Res 32:1099–1112, 100, Genomics 90:690–702, 102]. 
 
In earlier studies, the product of Grm7 mGluR7, a G protein-coupled receptor, has been implicated in stress systems [Mitsukawa et al. in Proc Natl Acad Sci USA 102:18712–18717, 63], anxiety-like behaviors [Cryan et al. in Eur J Neurosci 17:2409–2417, 14], memory [Holscher et al. in Learn Mem 12:450–455, 26], and psychiatric disorders (e.g., [Mick et al. in Am J Med Genet B Neuropsychiatr Genet 147B:1412–1418, 61; Ohtsuki et al. in Schizophr Res 101:9–16, 72; Pergadia et al. in Paper presented at the 38th Annual Meeting of the Behavior Genetics Association, Louisville, Kentucky, USA, 76]. 
 
Here, in experiments with mice, we show that (1) Grm7 knockout mice express increased alcohol consumption, (2) sub-congenic, and congenic mice carrying a Grm7 variant characterized by higher Grm7 mRNA drink less alcohol, and show a tendency for higher circadian dark phase motor activity in a wheel running paradigm, respectively, and (3) there are significant genetic differences in Grm7 mRNA abundance in the mouse brain between congenic and background mice identifying brain areas whose function is implicated in addiction related processes. 
 
We hypothesize that metabotropic glutamate receptors may function as regulators of homeostasis, and Grm7 (mGluR7) is involved in multiple processes (including stress, circadian activity, reward control, memory, etc.) which interact with substance use and the development of addiction. 
 
In conclusion, we suggest that mGluR7 is a significant new therapeutic target in addiction and related neurobehavioral disorders. 
 
 
 
Request Reprint E-Mail:   BGyetvai@NKI.RFMH.ORG